Sains Malaysiana 53(9)(2024): 3215-3227
http://doi.org/10.17576/jsm-2024-5309-24
Bayesian Approach for
Estimating the Parameters of the Time-to-Failure Distribution and Its
Percentiles under Power Degradation Model
(Pendekatan Bayesian untuk Menganggar Parameter Taburan Masa Kegagalan dan Peratusannya di bawah Model Penurunan Kuasa)
LAILA NAJI BA DAKHN1,2,
MOHD AFTAR ABU BAKAR1, RAZIK RIDZUAN MOHD TAJUDDIN1,* & KAMARULZAMAN IBRAHIM1
1Department of Mathematical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Department of
Mathematics, Faculty of Science, Hadhramout University, Mukalla, Hadhramout,
Yemen
Received: 8 January 2024/Accepted: 9 July 2024
Abstract
The degradation models are often applied on the
degradation data for studying time-to-failure distribution. In this study, the
Bayesian approach is applied on the power degradation model for estimating the
parameters of the time-to-failure distribution and its percentiles. Two
different distributions are assumed for the degradation parameter of the model.
The degradation parameter is firstly assumed to follow the skew-normal
distribution with three jointly independently distributed parameters such that
the gamma prior is assumed for the shape parameter, while the scale and the
location parameters are assumed uniform. The second distribution assumed for
the degradation parameter is the log-logistic distribution with two jointly
independent random parameters where the shape parameter is assumed gamma, while
the scale parameter is assumed uniform. Based on the Gibbs sampling method
carried out under the JAGS platform, the models considered are applied on the
simulated data and the NASA turbofan Jet engine dataset and the results found
are compared. In modeling the time-to-failure distribution, it is shown that
based on the simulated data and real data, the Bayesian approach for the power
degradation model with the skew-normal degradation parameter outperformed the
Bayesian approach for the power degradation model with the log-logistic
degradation parameter.
Keywords: Bayesian approach; log-logistic distribution; power
degradation model; skew-normal distribution; time-to-failure distribution
Abstrak
Model degradasi sering digunakan
pada data degradasi untuk mempelajari taburan masa kegagalan. Dalam kajian ini,
pendekatan Bayes digunakan pada model degradasi kuasa untuk menganggarkan
parameter taburan masa kegagalan dan persentilnya. Dua taburan yang berbeza
diandaikan untuk parameter degradasi model. Parameter degradasi pertama
diandaikan mengikut taburan normal terpencong dengan tiga parameter yang
tertabur secara tak bersandar dengan diandaikan prior gamma untuk parameter
bentuk, sementara parameter skala dan lokasi diandaikan tertabur secara
seragam. Taburan kedua yang diandaikan untuk parameter degradasi adalah taburan
log-logistik dengan dua parameter rawak bercantum yang tak bersandar dengan
andaian parameter bentuk tertabur secara gamma, sementara parameter skala
tertabur secara seragam. Berdasarkan kaedah pensampelan Gibbs yang dilaksanakan
di platform JAGS, model yang dipertimbangkan digunakan pada data simulasi dan
set data enjin jet kipas turbo NASA dan hasil yang ditemui dibandingkan. Dalam
pemodelan taburan masa kegagalan, didapati bahawa berdasarkan data yang
disimulasikan dan data sebenar, prestasi pendekatan Bayes untuk model degradasi
kuasa dengan parameter degradasi normal terpencong mengatasi prestasi pendekatan
Bayes untuk model degradasi kuasa dengan parameter degradasi log-logistik.
Kata kunci: Masa kegagalan; model degradasi kuasa; pendekatan Bayes; taburan
log-logistik; taburan normal terpencong
REFERENCES
Alhamidie, A.A., Kamarulzaman Ibrahim, Alodat, M.T. & Wan
Zawiah Wan Zin. 2019. Bayesian inference for linear regression under
alpha-skew-normal prior. Sains Malaysiana 48(1): 227-235.
Azzalini, A. 1985. A class of
distributions which includes the normal ones. Scandinavian Journal of
Statistics 12(2): 171-178.
Dakhn, L.N.B., Mohd Aftar Abu Bakar
& Kamarulzaman Ibrahim. 2023. Bayesian estimation of time to failure
distributions based on skew normal degradation model: An application to GaAs
laser degradation data. Sains Malaysiana 52(2): 641-653.
https://doi.org/http://doi.org/10.17576/jsm-2023-5202-24
Dakhn, L.N.B., Ebrahem, M.A-Haj.
& Eidous, O. 2017. Semi-parametric method to estimate the time-to- failure
distribution and its percentiles for simple linear degradation model.Journal of Modern
Applied Statistical Methods 16(2): 322-346.
https://doi.org/10.22237/jmasm/1509495420
Brooks, S.P. & Gelman, A. 1998.
General methods for monitoring convergence of iterative simulations. Journal
of Computational and Graphical Statistics 7(4): 434-455.
https://doi.org/10.1080/10618600.1998.10474787
Chen, S., Wang, M., Huang, D., Wen,
P., Wang, S. & Zhao, S. 2020. Remaining useful life prediction for complex
systems with multiple indicators based on particle filter and parameter
correlation. IEEE Access 8: 215145-215156. https://doi.org/10.1109/ACCESS.2020.3041682
Eidous, O., Ebrahem, M.A-Haj. &
Dakhn, L.N.B. 2017. Estimating the time-to-failure distribution and its
percentiles for simple linear degradation model using double kernel method. Journal
of Probability and Statistical Science 15(1): 121-134.
Gelman, A. & Hill, J. 2007. Data
Analysis Using Regression and Multilevel/Hierarchical Models. New York:
Cambridge University Press.
Gelman, A. & Rubin, D.B. 1992.
Inference from iterative simulation using multiple sequences. Statistical
Science 7(4): 457-511.
Geweke, J. 1991. Evaluating the
accuracy of sampling-based approaches to the calculation of posterior moments. The
Fourth Valencia International Meeting on Bayesian Statistics, Peniscola,
Spain, April 15-20.
Ghaderinezhad, F., Christophe, L.
& Nicola, L. 2020. Bayesian inference for skew-symmetric distributions. Symmetry 12(4): 491. https://doi.org/10.3390/sym12040491
Gonzalez, J.R., Vazquez, M., Algora,
C. & Nunez, N. 2010. Real-time reliability test for a CPV module based on a
power degradation model. Progress in Photovoltaics: Research and
Applications 20(1): 6-11. https://doi.org/10.1002/pip
Guure, C.B. & Noor Akma Ibrahim.
2014. Approximate Bayesian estimates of Weibull parameters with Lindley’s
method. Sains Malaysiana 43(9): 1433-1437.
Kundu, D. 2008. Bayesian inference
and life testing plan for the Weibull distribution in presence of progressive
censoring. Technometrics 50(2): 144-154.
https://doi.org/10.1198/004017008000000217
Meeker, W.Q. & Escobar, L.A.
1998. Statistical Method for Reliability Data. New York: John Wiley
& Sons, Inc.
Oliveira, R.P.B., Loschi, R.H. &
Freitas, M.A. 2018. Skew-heavy-tailed degradation models: An application to
train wheel degradation. IEEE Transactions on Reliability 67(1):
129-141. https://doi.org/10.1109/TR.2017.2765485
Pan, D., Liu, J-B. & Yang, W.
2018. A new result on lifetime estimation based on Skew-Wiener degradation
model. Statistics and Probability Letters 138: 157-164.
https://doi.org/10.1016/j.spl.2018.03.009
Puggard, W., Niwitpong, S-A. &
Niwitpong, S. 2022. Comparison analysis on the coefficients of variation of two
independent Birnbaum-Saunders distributions by constructing confidence
intervals for the ratio of coefficients of variation. Sains Malaysiana 51(7): 2265-2281.
Saxena, A., Goebel, K., Simon, D.
& Eklund, N. 2008. Damage propagation modeling for aircraft engine
run-to-failure simulation. International Conference on Prognostics and
Health Management, PHM 2008. https://doi.org/10.1109/PHM.2008.4711414
Sen, S., Maiti, S.S. & Chandra,
N. 2016. The Xgamma distribution: Statistical properties and application. Journal
of Modern Applied Statistical Methods 15(1): 774-788.
https://doi.org/10.22237/jmasm/1462077420
Shafiq, M., Alamgir & Muhammad
Atif. 2016. On the estimation of three parameters lognormal distribution based
on fuzzy life time data. Sains Malaysiana 45(11): 1773-1777.
Siju, K.C. & Kumar, M. 2018.
Bayesian estimation of reliability using time-to- failure distribution of
parametric degradation models. Journal of Statistical Computation and
Simulation 88(9): 1717-1748. https://doi.org/10.1080/00949655.2018.1445743
Spiegelhalter, D.J., Best, N.G.,
Carlin, B.P. & Van Der Linde, A. 2002. Bayesian measures of model
complexity and fit. Journal of the Royal Statistical Society 64(4): 583-639.
Wu, J., Wu, C., Cao, S., Or, S.W.,
Deng, C. & Shao, X. 2019. Degradation data-driven time-to-failure
prognostics approach for rolling element bearings in electrical machines. IEEE
Transactions on Industrial Electronics 66(1): 529-539.
https://doi.org/10.1109/TIE.2018.2811366
Yadav, A.S., Saha, M., Tripathi, H.
& Kumar, S. 2021. The exponentiated Xgamma distribution: A new monotone
failure rate model and its applications to lifetime data. Statistica 81(3): 303-334. https://doi.org/10.6092/issn.1973-2201/10578
*Corresponding author; email: rrmt@ukm.edu.my
|